Matrix transformations for computing rightmost eigenvalues of large sparse non-symmetric eigenvalue problems

نویسندگان

  • KARL MEERBERGEN
  • DIRK ROOSE
  • D. ROOSE
چکیده

This paper gives an overview of matrix transformations for finding rightmost eigenvalues of Ax = kx and Ax = kBx with A and B real non-symmetric and B possibly singular. The aim is not to present new material, but to introduce the reader to the application of matrix transformations to the solution of large-scale eigenvalue problems. The paper explains and discusses the use of Chebyshev polynomials and the shift-invert and Cayley^ transforms as matrix transformations for problems that arise from the discretization df partial differential equations. A few other techniques are described. The reliability of iterative methods is also dealt with by introducing the concept of domain of confidence or trust region. This overview gives the reader an idea of the benefits and the drawbacks of several transformation techniques. We also briefly discuss the current software situation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lyapunov Inverse Iteration for Computing a Few Rightmost Eigenvalues of Large Generalized Eigenvalue Problems

In linear stability analysis of a large-scale dynamical system, we need to compute the rightmost eigenvalue(s) for a series of large generalized eigenvalue problems. Existing iterative eigenvalue solvers are not robust when no estimate of the rightmost eigenvalue(s) is available. In this study, we show that such an estimate can be obtained from Lyapunov inverse iteration applied to a special ei...

متن کامل

New Algorithms for Computing the Real Structured Pseudospectral Abscissa and the Real Stability Radius of Large and Sparse Matrices

We present two new algorithms for investigating the stability of large and sparse matrices subject to real perturbations. The first algorithm computes the real structured pseudospectral abscissa and is based on the algorithm for computing the pseudospectral abscissa proposed by Guglielmi and Overton [SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1166-1192]. It entails finding the rightmost eigenva...

متن کامل

Lyapunov Inverse Iteration for Identifying Hopf Bifurcations in Models of Incompressible Flow

The identification of instability in large-scale dynamical systems caused by Hopf bifurcation is difficult because of the problem of identifying the rightmost pair of complex eigenvalues of large sparse generalized eigenvalue problems. A new method developed in [Meerbergen and Spence, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 19821999] avoids this computation, instead performing an inverse ite...

متن کامل

A Filtered Lanczos Procedure for Extreme and Interior Eigenvalue Problems

When combined with Krylov projection methods, polynomial filtering can provide a powerful method for extracting extreme or interior eigenvalues of large sparse matrices. This general approach can be quite efficient in the situation when a large number of eigenvalues is sought. However, its competitiveness depends critically on a good implementation. This paper presents a technique based on such...

متن کامل

Variable-step preconditioned conjugate gradient method for partial symmetric eigenvalue problems

in which A is a large sparse symmetric positive definite matrix, λ is an eigenvalue and u is a corresponding eigenvector. The evaluation of one or more smallest eigenpairs has much practical interest for describing the characteristics of physical phenomena. For example, smallest eigenvalues characterize the base frequences of vibrating mechanical structures. Typically, the matrix A is a discret...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996